The Escasty of Touch

His cold hands on my waist His breath all over my neck I could feel loosing myself once again No matter it was 10yrs Down the lane A serene smile on both lips Curve going deep into infinity The lips…

Smartphone

独家优惠奖金 100% 高达 1 BTC + 180 免费旋转




Plants are great at storing CO2. These scientists aim to make them even better.

Researchers around the world are working to improve plants’ ability to combat climate change.

The planet’s plants pull CO2 out of the atmosphere and store it in their leaves, stems and roots. Some of that carbon makes its way into the soil, and some of that soil carbon is ultimately mothballed for millennia.

These days, though, “we as humans are putting up so much CO2that the Earth is not able to compensate,” says Wolfgang Busch, a plant biologist with the Salk Institute for Biological Studies in La Jolla, California. Busch is working on a new project: to design plants that can suck even more CO2 out of the atmosphere and lock it away for centuries.

“We’re not trying to get plants to do something they don’t normally do,” says Busch. “We’re just trying to increase the efficiency. Then we can use that to mitigate climate change.”

Scientists at the Salk Institute in La Jolla, California, are working to boost plants’ ability to store carbon. From left: Joseph Noel, Joseph Ecker, Julie Law, Joanne Chory, Wolfgang Busch. Photo courtesy of the Salk Institute

To do that, the researchers are tapping suberin, a carbon-rich, breakdown-resistant molecule produced by plants that’s a primary component of cork. They’re testing varieties of two species, birdsfoot trefoil and common mustard weed, from around the world to find those that have evolved to make more suberin. And they’re studying the biology behind that trait. Once they’ve identified the genes associated with suberin production, they can use conventional breeding, genetic engineering or a combination of the two to create crops that are carbon-storage powerhouses.

The Salk project is part of “a new generation of agriculture, where it becomes important not to just look for higher yields in harvestable portions [of crops] but also to combine that with more carbon being transferred to the soil,” says Christer Jansson, director of plant sciences at the Department of Energy’s Environmental Molecular Sciences Laboratory.

Part of the appeal of using the rhizobial microbiome is the potential to use microbes that could both breed more productive crops and also store more carbon. “Putting carbon in the soil by itself — there’s no money in that,” says Jansson. “It has to be economically responsible for a farmer or a biotech company to invest in it.”

At Salk, too, the Harnessing Plants team is trying to ensure that larger roots and more suberin don’t come at the expense of crop yields. “The long-term goal is to generate something that could also be used to feed people,” says Julie Law, a plant biologist working on the project.

Busch and Law are also hoping to produce plants that can grow in marginal areas, such as the uncultivated edges of farmers’ fields, to maximize the land area devoted to storing carbon. Their goal is to make plants that are 20 times more effective at locking carbon in the soil, and to use those plants to store half of the CO2humans emit each year. To reach that ambitious goal, they say, would require 6 percent of the planet’s agricultural land. That could include using the plants as cover crops.

Elsewhere, scientists are working on making perennial versions of humanity’s most important food crops — all of which are annuals, meaning they must be replanted each year. Perennials have far deeper root systems and don’t need to be tilled each year, making them much better at squirreling carbon away.

With roots up to 10 feet (3 meters) long, Kernza (on the right for each season, compared with annual wheat) yields abundant carbon storage as well as edible grain. Image courtesy of The Land Institute

All of these projects hold promise — and all will take not just money and manpower but an even more scarce resource: time.

“We don’t really have a lot of time for this,” Busch says of the suberin project. To develop something like this soon enough for it to work, he says, “we really will need to hurry up.”

Add a comment

Related posts:

Main Token Event Announcement

When we announced the Vernam project, we said that our intention is nothing less, but to revolutionize a $4.73 trillion industry. Since day one we’ve been tirelessly working on our mission. Last week…